当前位置: 首页  师资队伍  教师简介| 正文
王骏
发布时间:2023-11-08 12:03:39   发布人: 能源与材料学院


姓名:王骏

职称:副研究员

电子邮件:junwang@sspu.edu.cn

办公地点:上海市浦东新区金海路236028号楼220

团队主页:无


工作经历

2023.11~至今上海第二工业大学能源与材料学院副研究员,硕士生导师

20212023 华东理工大学物理学院博士后

教育背景

20162021 复旦大学物理学系,理论物理专业博士

20082012 华东理工大学物理学院,应用物理专业学士

研究领域

      1. 复杂系统传热传质

      2. 热超构材料及其工程应用

科研项目

1. 国家自然科学基金(青年):数字编码热学超材料的编程机理及其调控策略研究,主持,2023-2024

2国家自然科学基金(理论物理专款):基于有效介质近似的人工结构热能调控研究,主持,2022

 

3. 上海市“科技创新行动计划”启明星项目(A类):动态热超构材料的涌现行为与热场的时空调控,主持,2024-2027

4. 国家自然科学基金(重点):变换热学及其扩展理论的建立、发展与应用,参与,2021-2025

授权专利

      1. 黄吉平,王骏,杨福宝,须留钧,一种呈现红外热幻像且可见光下隐身的全热学超表面,中国发明专利,专利号:ZL202010204485.1,授权时间: 2022.5

      2. 黄吉平,王骏,戴高乐,一种在热学扩散系统中实现多稳态的方法,中国发明专利,专利号:ZL201910651858.7,授权时间: 2022.12

      3. 黄吉平,雷敏,王骏,基于温度依赖变换热电学设计的热电隐身斗篷,中国发明专利,专利号:ZL202110746346.6,授权时间: 2023.10

      4. 黄吉平,雷敏,王骏:基于温度依赖变换热电学设计的热电聚集器,中国发明专利,专利号:ZL 202110746269.4, 授权时间: 2023.11

      5. 黄吉平,雷敏,王骏:基于温度依赖坐标变换理论的热电旋转器及其设计方法,中国发明专利,专利号:ZL202110745947.5, 授权时间: 2024.4

      6. 黄吉平,雷敏,王骏:基于温度依赖变换热电场理论的热电转换器及其设计方法,中国发明专利,专利号:ZL202110744936.5, 授权时间: 2024.4

      7. 黄吉平, 雷敏, 王骏:基于相变材料的温度可调谐热电隐身斗篷及其设计方法,中国发明专利,专利号:ZL202110745957.9, 授权时间: 2024.7

主要论文

(Corresponding author*)

2025

1)       1) G. L. Dai*, T. Qu, M. Lei, Z. Li, F. B. Yang, Z. W. Zhang, Y. Y. Wang, H. Q. Xie, J. P. Huang*, and J. Wang*, Controlling transient and coupled diffusion with pseudoconformal mapping, PNAS 122, e2511708122 (2025)

2)       2)M. Zhang, Y. S. Song, J. Wang, X. L. Shi, Q. Chen, R. Ding, J. J. Mou, H. P. Fang, Y. L. Zhou*, and R. Y. Chen*, Enhancement effect of static magnetic field on bactericidal activity, Small 21, 2412334 (2025).

2024

3)    C. Z. Fan*, C.-L. Wu, Y. Y. Wang, B. Wang*, and J. Wang*, Thermal metamaterials: From static to dynamic heat manipulation, Physics Reports 1077, 1–111 (2024).

4)    J. H. Wang, M. Zhang, Y. C. Yang, G. L. Dai, Q. B. Pan, Y. Kong, B. Zhou, H. L. Dong, Y. X. Qu, Z. Y. Ma, H. P. Fang, H. He*, Z. Liu*, J. Wang*, and R. Y. Chen*, Onestep detection of multipollutants with different sizes in water by using cellulosebased composites, Cellulose 31, 8055–8066 (2024).

5)    R. Y. Chen, Y. X. Qu, Z. Y. Ma, J. Wang*, and H. He*, Size effects of gold nanoparticles on activities of cellulose nanofibertextured SERS substrates, Cellulose 31, 7467–7477 (2024).

6)    L. J. Xu, G. L. Dai, F. B. Yang, J. R. Liu, Y. H. Zhou, J. Wang, G. Q. Xu, J. P. Huang, and C.-W. Qiu, Free-form and multi-physical metamaterials

with forward conformality-assisted tracing, Nature Computational Science 4, 532-541 (2024).

7)    M. Zhang, Z. N. Fang, J. Wang, R. Ding, H. P. Fang, and R. Y. Chen*, Unexpectedly high antibacterial ability of water in copper pot with tiny amount of plant leaves, Water Research X 24, 100238 (2024).

2023

8)    F. B. Yang, P. Jin, M. Lei, G. L. Dai, J. Wang*, and J. P. Huang*, Space-time thermal binary coding by spatiotemporally modulated metashell, Physical Review Applied 19, 054096 (2023).

9)    G. L. Dai* and J. Wang*, Transformation hydrodynamic metamaterials: Rigorous arguments on form invariance and structural design with spatial variance, Physical Review E 107, 055108 (2023).

10) M. Lei, C. R. Jiang, F. B. Yang, J. Wang*, and J. P. Huang*, Programmable all-thermal encoding with metamaterials, International Journal of Heat and Mass Transfer 207, 124033 (2023).            

11) G. L. Dai* and J. Wang*, On transformation form-invariance in thermal convection, Materials 16, 376 (2023).

12) P. Jin, J. R. Liu, L. J. Xu, J. Wang, X. P. Ouyang, J.-H. Jiang*, and J. P. Huang*, Tunable liquid-solid hybrid thermal metamaterials with a topology transition, PNAS 120, e2217068120 (2023).

13) B. Q. Peng, Q. Zhang, Y. Y. Zhang, Y. M. Zhao, S. Y. Hou, Y. Z. Yang, F. F. Dai, R. B. Yi, R. Y. Chen, J. Wang, L. Zhang, L. Chen, S. L. Zhang*, and H. P. Fang*, Unexpected piezoresistive effect, room-temperature ferromagnetism, and thermal stability of 2d β-cui crystals in reduced graphene oxide membrane, Advanced Electronic Materials 2201241 (2023).

14) G. L. Dai*, F. B. Yang, J. Wang, L. J. Xu*, and J. P. Huang*, Diffusive pseudo-conformal mapping: Anisotropy-free transformation thermal media with perfect interface matching, Chaos, Solitons and Fractals 174, 113849 (2023).

15) J. H. Wang, M. Zhang, J. Wang, and R. Y. Chen, Coupling effects of human serum albumin and sodium chloride on biological desiccation patterns, Heliyon 9, e19970 (2023).

2022

16) G. L. Dai, Y. H. Zhou, J. Wang*, F. B. Yang, T. Qu, and J. P. Huang*, Convective cloak in Hele-Shaw cells with bilayer structures: Hiding objects from heat and fluid motion simultaneously, Physical Review Applied 17, 044006 (2022).

17) P. F. Zhuang, J. Wang*, S. Yang, and J. P. Huang*, Nonlinear thermal responses in geometrically anisotropic metamaterials, Physical Review E 106, 044203 (2022).

18) J. Wang* and G. L. Dai*, Configuration-induced directional nonlinearity enhancement in composite thermal media, Frontiers in Physics 10, 924890 (2022).

19) T. Q. Huang, F. B. Yang, T. Wang, J. Wang, Y. W. Li, J. P. Huang, M. Chen*, and L. M. Wu*, Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity, Applied Materials Today 26, 101299 (2022).

20) F. B. Yang*, L. J. Xu*, J. Wang, and J. P. Huang*, Transformation theory for spatiotemporal metamaterials, Physical Review Applied 18, 034080 (2022).

21) W. Maimuli, R. J. Yang, S. Wang, L. J. Fan, F. F. Dai, J. Wang, L. Li, L. Cheng*, and S. S. Liang*, High water permeance and ion rejection through F-graphene oxide membranes, New Journal of Chemistry 46, 22122 (2022).

2021及之前

22) B. Y. Tian, J. Wang*, G. L. Dai*, X. P. Ouyang*, and J. P. Huang*, Thermal metadevices with geometrically anisotropic heterogeneous composites, International Journal of Heat and Mass Transfer 174, 121312 (2021).

23) T. Qu, J. Wang*, and J. P. Huang*, Manipulating thermoelectric fields with bilayer schemes beyond Laplacian metamaterials, EPL (Europhysics Letters) 135, 54004 (2021).

24) M. Lei, J. Wang*, G. L. Dai, P. Tan, and J. P. Huang*, Temperature-dependent transformation multiphysics and ambient-adaptive multiphysical metamaterials, EPL (Europhysics Letters) 135, 54003 (2021).

25) S. Yang, J. Wang, G. L. Dai, F. B. Yang, and J. P. Huang*, Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application, Physics Reports 908, 1-65 (2021).

26) L. J. Xu, J. Wang, G. L. Dai, S. Yang, F. B. Yang, G. Wang*, and J. P. Huang*, Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection-conduction, International Journal of Heat and Mass Transfer 165, 120659 (2021).

27) J. Wang, G. L. Dai, F. B. Yang, and J. P. Huang*, Designing bistability or multistability in macroscopic diffusive systems, Physical Review E 101, 022119 (2020).

28) J. Wang, F. B. Yang, L. J. Xu, and J. P. Huang*, Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity, Physical Review Applied 14, 014008 (2020).

29) J. Wang, G. L. Dai, and J. P. Huang*, Thermal metamaterial: Fundamental, application, and outlook, iScience 23, 101637 (2020).

30) J. Wang, J. Shang, and J. P. Huang*, Negative energy consumption of thermostats at ambient temperature: Electricity generation with zero energy maintenance, Physical Review Applied 11, 024053 (2019).

 

 

 


分享到:
相关信息